
Lecture 2
A First Look at Unity

98-127: Game Creation for People Who Want to Make Games (F19)

Written by Adrian Biagioli

Instructors:
Adrian Biagioli (abiagiol@andrew.cmu.edu)
Carter Williams (ncwillia@andrew.cmu.edu)

1 Objectives

By the end of this lesson you will be able to:

• Understand what a Game Engine is, and why we use the Unity game engine

• Utilize common Unity editor functionality and navigate scenes

• Understand Unity’s high level architecture: the Scene Graph and GameObjects

• Utilize the inspector to design levels, given art assets and scripts

These lecture notes were written for Unity 2019.2.3f1.

2 What is a Game Engine?

Video Games are a very complicated technical challenge. Think about all of the stuff that goes on in your
average video game, like Call of Duty. There is a complicated Graphics Pipeline, which is the code that
communicates very quickly with the user’s graphics processor to produce complicated effects (shadows,
explosions, hair, muzzle flashes. . . the list goes on). There is also usually a Physics Engine that attempts to
simulate how objects would interact with each other (for example, it would figure out how a grenade bounced
throughout the scene). There’s also some sort of Audio Mixer that handles audio effects (for example, a low-
pass filter when you are hit with a flashbang). Then there’s the Animation Engine, which allows characters
to move around the scene realistically. Many games include Artificial Intelligence, UI Systems, and more.

That’s a lot of things that many games have in common! In fact, it seems like a waste of time to re-do
all of these complicated systems for every game that we want to make. This is why Game Engines exist.
A Game Engine aims to simplify game development by doing all the hard stuff for us (i.e. everything I
mentioned in the previous paragraph). This allows game designers like ourselves to focus on the good stuff:
how to make our game fun. In addition to this, game engines also tend to simplify how we code our games.
Many “game-engine-less” games are simply written in C++, which can be hard for beginners. In contrast,
Unity is in C#, which is much more approachable.

1

mailto:abiagiol@andrew.cmu.edu
mailto:ncwillia@andrew.cmu.edu

Lecture 2 A First Look at Unity 98-127

Unity is the most popular Game Engine out there right now for indie game developers, and it is the one
that we will use in this course. Right now, Unity’s biggest competitor is the Unreal Engine 4 (UE4), which
is developed by Epic Games (creators of Gears of War and Fortnite). UE4 rivals Unity in many respects and
outshines it in some (many will argue that UE4 has better builtin graphics than Unity), but we will not use
it in this class because it is generally harder to use for beginners and requires knowledge of C++. Another
important difference is how you need to pay royalties if you decide to sell your game: Unity allows you to
sell your game without paying any royalties, until your game makes $100k per year. After that point, you
need to upgrade to Unity “Plus” or “Pro”, which has a monthly fee. Unreal requires a 5% royalty of all
revenue of your game past $3000, but has no Plus or Pro tier.

3 Getting Started with Unity

If you haven’t already, download Unity:

• You can download Unity at https://store.unity.com/download. Accept the license terms and click
“Download Unity Hub”. The Unity Hub is an application that you can use to browse Unity projects
and install new Unity versions. To install a new Unity Version, navigate to Installs Add in the Unity
Hub interface.

• If you’re a programmer running Windows or Mac, I would recommend downloading Microsoft Visual
Studio. Visual Studio and Visual Studio for Mac both have great integration with Unity and are better
than the default MonoDevelop: https://www.visualstudio.com.

Unity Project Select Window

When you open Unity Hub, you will first see the project
selection screen. You may need to create a Unity account—do
so if prompted. Click “new project” on the top right of the
window.

Enter a name for your new project (“Lecture 2 Project”)
and specify a location for the project folder. Make sure “3D” is
checked. Then click create project. Unity projects are saved
in folders on your machine, so if you browse to the project
location you gave then you will find the Unity project files.

The Unity editor should now appear. The editor is divided
into panels, each providing a different way to interact with your
Unity project. If your editor doesn’t look like the one on the
next page, click Layout Default on the top right of the editor.
Notice that panels can be reorganized and redocked to other
panels by clicking and dragging on the tab at the top of each pane. You can also resize panels and drag them
out to their own window.

2

https://store.unity.com
https://store.unity.com/download
https://www.visualstudio.com

Lecture 2 A First Look at Unity 98-127

4 Basic Unity Editor Panels

This is the default configuration of the Unity editor, opening a freshly-made project. Each panel that
you see in the above screenshot is labeled as follows:

1. The Scene View allows you to look into the game world from a perspective other than the in-game
camera. You can navigate the scene view as follows:

• Right Click + Drag: Look around

• Right Click + WSADQE: Move camera (FPS controls). Hold shift to move faster.

• Left Click: Select and manipulate objects (see item 6 below)

2. The Project Window is a view into the assets of your game. Assets are normal files that your game
will use like scripts, 3D Models, textures (images), audio, animation data, scene files, and more. The
project window behaves much like the Finder on macOS or Explorer on Windows.

• In fact, these files are located in the Assets subfolder of your Unity project! Try right clicking
on a file in the project window and select “Reveal. . . ”

3. The Hierarchy View lists all of the GameObjects that are currently in the scene.

• In Unity terminology, a GameObject is any “thing” in your game. Everything is a GameObject:
the player, a fence, an enemy, a weapon, a button, an NPC, a scoreboard, Right now there
are two GameObjects in the scene, a Main Camera and a Directional Light for the Sun.

• You can select a GameObject by clicking on it: either in the scene view or the hierarchy view.

3

Lecture 2 A First Look at Unity 98-127

• If you double click on a GameObject in the hierarchy view you can focus on it in the scene view.

4. The Inspector allows you to inspect and modify the properties of whichever GameObject or Asset
is selected. For example, you can change the position of a GameObject or the name of a file. More
information on how to use the Inspector will follow.

5. The Play Button (Ù) will shift focus from the Scene View to the Game View, allowing you to play
your game in real time! When you are in “Play Mode”, you can switch back to the Scene/Hierar-
chy/Inspector Panels and continue to modify the scene. However, as soon as you stop playing (by
clicking the play button again) your changes will revert to before you started playing, so be careful!
While playing, you can also click the Pause Button (Ñ) to pause execution of the game (you can still
make changes in the Scene View / Inspector while paused). While paused, you can click the Advance
Frame Button (k) to advance by one frame.

6. The Scene View Tools change the currently-active manipulator in the scene view. These manipulators
allow you to move, rotate, and scale GameObjects–more on this later.

5 The Scene Graph and GameObjects

When you first open Unity, the default scene (Called SampleScene)
is loaded. In Unity, a Scene can be considered a “Level” or a
“Screen” in your game. Scenes are saved to a .scene file in your
Assets folder. As mentioned above, there are two GameObjects cur-
rently in the scene: a Main Camera and an Directional Light. If you
don’t see any GameObjects in the hierarchy view when you load the
project, click on the small triangle next to SampleScene in the
hierarchy view to expand it. Let’s add a third GameObject in the
scene; navigate to GameObject 3D Object Cube as shown on the
right, and a cube should appear in your scene. Notice the new entry
“Cube” in the scene hierarchy view.

5.1 Manipulating GameObjects with Scene View tools

The Scene View Tools are located at the top left of the Unity window
and are accessible at any time. You can use the Q W E R T Y keys as a shortcut:

Here are each of the manipulators, from left to right:

4

Lecture 2 A First Look at Unity 98-127

1. The Pan Tool allows you to click and drag on the Scene View to pan the camera left / right / up
/ down relative to where you are looking. You do not need to have the Pan Tool selected to right click
+ drag to move the camera, however.

2. The Move Tool shows a widget when selecting any GameObject that allows you to translate
the GameObject throughout the world. Try moving the cube that you made left and right inside the
scene. You can hold Cmd on Mac or ctrl on Windows to snap GameObject translation to regular
increments; navigate to Edit Snap Settings. . . to customize snapping settings.

3. The Rotate Tool shows a similar widget that allows you to rotate GameObjects. You can click
and drag on the Red/Blue/Green circles to constrain rotation to one axis, or you can click and drag
elsewhere on the widget to rotate the GameObject freely. Again, you can hold Cmd on Mac or ctrl

on Windows to snap rotation to regular degree increments. As with translation you can customize
snapping via Edit Snap Settings. . . .

4. The Scale Tool similarly allows you to scale objects in any dimension. You can scale in all
dimensions by clicking and dragging on the white box in the center of the widget. Snapping can be
used with the scale tool as well.

5. The Rect Tool is generally used in place of the other transformation tools for 2D games and UI
elements. It allows you to easily move and scale rectangular objects in the X and Y dimensions.

6. The Transform Tool , added in a recent version of Unity, combines the Move / Rotate / Scale
tools into one multi-purpose widget.

5.2 Parenting GameObjects

Two GameObjects can also be Parented to each other. Any transformations that are applied to the parent are
also applied to the children. This is useful very often - for example, you might have a sword GameObject that
is the child of a character’s hand GameObject. You can parent two GameObjects by clicking and dragging
one GameObject on top of another in the Hierarchy view.

→ →

How to parent two GameObjects in the hierarchy view

After two GameObjects are parented, then manipulating the parent will similarly manipulate the child,
as shown below:

5

Lecture 2 A First Look at Unity 98-127

→
/

Left: Without transformation. Middle: Rotating the parent. Right: Rotating the child

6 Composing GameObjects with Components

You may have noticed by now that as you select GameObjects
in the scene, the Inspector panel (on the right) updates depend-
ing on the currently-selected GameObject. Let’s take a closer
look at the Inspector now. Select the Cube GameObject that
we created earlier. At the top of the inspector there is a block
of transform attributes – these are shared by all GameObjects.
When you use any of the transformation manipulators in the
Scene View Tools, these values will change accordingly. You
can also edit these values (for the position, rotation, and scale
of the object) in the inspector. Below the transform attributes
there are 3 headings: Mesh Filter, Mesh Renderer, and Box Col-
lider.

Now click on the Main Camera GameObject and take a
look at the Inspector. As mentioned, the transform attributes are still there; you can move and rotate the
camera as normal (scaling the camera simply does nothing). However the Mesh Filter, Mesh Renderer, and
Box Collider have been replaced by a two blocks: Camera and Audio Listener.

These blocks represent the different Components of each GameObject. A Component is the funda-
mental building block of GameObjects in Unity – all of the behavior of a GameObject is performed by its
components. For example, the behavior of our cube is encapsulated by its components: the Mesh Filter and
Mesh Renderer define what 3D model should be rendered and how, and the Box Collider allows the cube to
interact with Unity’s physics system. Similarly, the Camera allows one to use a GameObject as a viewport
and Audio Listener enables 3D positional sound. Components are also configurable – try fiddling with the
Field of View of the camera for example.

The objects that we have looked at so far were made for us by Unity’s interface, however you can
build GameObjects ”from scratch,” by starting with an empty GameObject (an Empty GameObject is one
without any components). Create an empty GameObject via GameObject Create Empty and select it in the
hierarchy view. Now click the Add Component button, search for Mesh Filter, and hit Enter . You should
see a Mesh Filter added to your GameObject.

6

Lecture 2 A First Look at Unity 98-127

→ →

Assigning a Mesh to our Mesh Filter

Now try adding the Mesh Renderer and Box Collider components. You will notice that the Cube now
appears in the scene, but it is an ugly purple color. This is because we need to add a Material to the cube.
A Material is a special type of Asset that defines how a 3D model should render. Let’s assign the default
material to this mesh – you can do this by expanding the Materials menu and assigning the default material
as shown below:

→ → →

Assigning a Material to our new GameObject

You can create your own material in the Project view. Navigate to Assets Create Material , name the
material in the Project view, and tweak the material in the inspector. Then you can apply the material as
before. Most of the time, we won’t need to compose GameObjects manually like this. However, it is very
important to understand that all of Unity’s builtin functionality is simply exposed through components!

7 Importing Asset Packages

Let’s go ahead and import the base assets for this lecture. You can find the base assets at the link below:

http://stage.gamecreation.org/StuCo/F19/packages/lec02resources.unitypackage

7

http://stage.gamecreation.org/StuCo/F19/packages/lec02resources.unitypackage

Lecture 2 A First Look at Unity 98-127

Unitypackage Import Dialog

This is a .unitypackage file. Unitypackages are a file for-
mat specifically made to import project settings and assets into
Unity. With your new project open, double click on the down-
loaded file to open it in Unity. You should see the window to
the right. Click “All”, then “Import” to import the files.

7.1 Using the Unity Asset Store

The Unity Asset Store is an online store for .unitypackages. If
you don’t have access to a larger team, you can use the asset
store to get art, scripts, and Editor tools. In fact, the lecture
resources (linked above) contain assets from a few asset store
packages (the Unity Standard Assets, a 3D Gem Models pack,
and some textures for prototyping). You’ll need a free Unity
account to use the Asset Store.

8 Example Game 1: Plinko

After importing the lecture assets, navigate to Assets Plinko Plinko.scene in the project
view and double click on the scene file to open it. Press play, and you will see a red cube fall between many
pegs into buckets at the bottom of the screen. When the cube falls in a bucket, the score is incremented. Try
moving the cube around before playing – notice that it realistically collides with the world and moves in a
physically-plausible way, no matter where it starts.

8

https://assetstore.unity.com/packages/essentials/asset-packs/standard-assets-32351
https://assetstore.unity.com/packages/3d/props/3d-crystal-gems-pack-112381
https://assetstore.unity.com/packages/2d/textures-materials/gridbox-prototype-materials-129127

Lecture 2 A First Look at Unity 98-127

Changing GameObject layers

There are two things that are particularly important about the red cube that en-
able this simple game. First, the Cube has a Rigidbody component attached. The
Rigidbody component tells Unity to simulate that GameObject via the physics en-
gine. Unity uses the Collider components attached to the GameObject (or its chil-
dren) to determine how the object interacts with the world (this cube has a Box
Collider attached). Second, the Cube is marked with a layer called Can Score. All
GameObjects belong to a Layer in the scene, and Layers can be used when scripting objects in your game.
In this example, all GameObjects in the Can Score layer will increase the score when dropped into a bucket.
All other GameObjects will not be affected.

In the hierarchy view, search for “Trigger” and click on one of the GameObjects. These are the logical
GameObjects that help facilitate scoring. There is a Box Collider here as well, with the “Is Trigger” box
checked. “Is Trigger” signals to Unity that this collider shouldn’t actually be included in physics calcu-
lations (that is, nothing should be blocked by it), but it should still receive collision events for scripting
purposes. The other component, called Basic Trigger, receives these collision events and passes them on to
the scorekeeper script. The “Layer Mask” in Basic Trigger is set to Can Score, as mentioned. Importantly,
the Basic Trigger component is a Custom Script created specifically for this game. This is how scripting
works in Unity; developers simply create their own custom components!

Now search for the GameObject called “Score Display Canvas”. A Canvas component allows you to
create UI elements such as text or buttons. “Score Display Canvas” contains a Canvas component (as well
as some other Canvas-related supporting components) and a script called Score Counter. The Score Counter
script updates the text at the top of the scene.

9 Example Game 2: Pong

9

Lecture 2 A First Look at Unity 98-127

The second example scene is classic Pong! You can try it out by opening the scene at Assets Pong

Pong.scene. You can control the P1 paddle with the W and S keys, and the P2 paddle with and
. This game is an example of a 2D game in Unity; 2D games in Unity are created in largely the same

way as 3D games. The main difference is that 2D games tend to use 2D-centric components and the camera
ignores the Z dimension. Click the 2D button at the top of the Scene view to toggle between 2D and 3D

editing modes. It might also be helpful to switch to the Rect Tool when working in 2D.

Let’s compare the GameObjects in this scene with those in the Plinko example. As in Plinko, there is a
Canvas GameObject that is used to display the score. A custom component (called Pong Score) is attached
to the Canvas and handles the score logic. Now inspect the “Left Paddle” GameObject. The components
here are different than with the default 3D cube, but largely similar. Instead of the Mesh Renderer that
is used to render 3D objects, 2D GameObjects use a Sprite Renderer to draw 2D sprites. Unity actually
has two different physics subsystems, one for 2D and one for 3D, so all 2D objects use special 2D physics
components. Instead of a Rigidbody and Box Collider we use a Rigidbody 2D and Box Collider 2D.

The Pong Paddle script is used on the “Paddle Left” and “Paddle Right” GameObjects to facilitate
moving the paddles when pressing the corresponding keys. Try changing the Speed attribute to change the
movement speed of each paddle. Similarly the Pong Bullet script enables the ball/bullet object to move and
bounce correctly off of each paddle and the screen boundaries.

10 Example Game 3: First Person Game

The final example isn’t a complete game like the previous ones, but it is a good introduction to building
expansive environments in Unity.

10

Lecture 2 A First Look at Unity 98-127

10.1 The First Person Controller

The First Person Controller is part of the Unity Standard Assets and makes it incredibly easy to get a
First Person game up and running. We are using the First Person Controller in this scene - check out the
GameObject called “FPSController”. The Unity Standard Assets are a package created by Unity that
contains a number of often-useful components and assets (you can download them here). Try changing the
parameters of both the Character Controller component and the First Person Controller component such as
Walk/Run speed and height.

To clarify, the Character Controller component is built in to Unity and can be used by scripts to
move a character GameObject around the scene. The First Person Controller component is a script that
comes with the Unity Standard Assets that allows the player to look around with the mouse and move with
W S A D controls. The “FPSController” GameObject also contains an Audio Source component to

generate footstep sounds and a Rigidbody to receive physics events.

11 Exercise

Design one simple modification to any of the three demos that we went over today, and implement it in
Unity. Some ideas include:

• Modifying Plinko by adding more obstacles, so that it is harder to score well

• Modifying Pong so that the ball’s behavior is more complex (it is necessary to be familiar with C#
scripting first to do this)

• Creating a more complex environment in the First Person scene

11

https://assetstore.unity.com/packages/essentials/asset-packs/standard-assets-32351

	Objectives
	What is a Game Engine?
	Getting Started with Unity
	Basic Unity Editor Panels
	The Scene Graph and GameObjects
	Manipulating GameObjects with Scene View tools
	Parenting GameObjects

	Composing GameObjects with Components
	Importing Asset Packages
	Using the Unity Asset Store

	Example Game 1: Plinko
	Example Game 2: Pong
	Example Game 3: First Person Game
	The First Person Controller

	Exercise

