
Lecture 3
Wrangling Unity

98-127: Game Creation for People Who Want to Make Games (S20)

Written by Adrian Biagioli

Instructors:
Adrian Biagioli

(abiagiol@andrew.cmu.edu)
Carter Williams

(ncwillia@andrew.cmu.edu)

Woody McCoy
(mwmccoy@andrew.cmu.edu)

Sebastian Yang
(yukaiy@andrew.cmu.edu)

1 Objectives

By the end of this lesson you will be able to:

• Create C# scripts in the Unity editor, edit them, and apply them to GameObjects as Components

• Understand the basics of Unity’s MonoBehaviour: Start(), Update(), and more

• Add easy-to-use interfaces to your component in the Unity Inspector, enabling artists and level de-
signers to tweak parameters in your Unity code.

• Allow your scripts to inter-operate with other Components (of your own creation or Unity’s)

• Use Prefabs to dynamically create GameObjects in your scripts

These lecture notes were written for Unity 2018.3.3f1.

2 Downloading the Base Code

You can download all of the base code for this lecture via the following Unitypackage. In these lecture notes,
I’ve included the path to each script before every code sample (for example, the first code sample below is
labeled BasicFunctions StartTester.cs, which means that you can find StartTester.cs in
the BasicFunctions folder).

http://stage.gamecreation.org/StuCo/F19/packages/lec03resources.unitypackage

See the lecture 2 notes for more info on how to import Unitypackages.

1

mailto:abiagiol@andrew.cmu.edu
mailto:ncwillia@andrew.cmu.edu
mailto:mwmccoy@andrew.cmu.edu
mailto:yukaiy@andrew.cmu.edu
http://stage.gamecreation.org/StuCo/F19/packages/lec03resources.unitypackage

Lecture 3 Wrangling Unity 98-127

3 Cooking Components

In the last lecture, we went over how to use components created by your team members or Unity themselves
to compose complex relationships between GameObjects. But what if we want to define our own custom
behavior? Unity allows you to create your own components via a C# Script. C# is a programming language
maintained by Microsoft. It is very similar to Java and should feel familiar to anyone who knows a C-based
language. We will not cover how to code in this class; if you are interested in learning more about using C#,
you can find plenty of resources online. We will try to write about important differences between C# and
C/C++/Java/Python (languages that are used more often in classes at CMU), so do not fret if you have no
experience with C# in particular. Read more about C# here.

To create a new component type, you need to create a C# Script in the project view. Open up the
project view in Unity, right click on it, and select Create C# Script . Alternatively you can navigate to
Assets Create C# Script . Name your first script StartTester.cs. Let’s make this script print the
familiar “Hello, World” to the debugging console. Type the following in your editor:

BasicFunctions StartTester.cs

1 using UnityEngine;

2

3 public class StartTester : MonoBehaviour

4 {

5 // Start() is called exactly once when you launch the game

6 private void Start()

7 {

8 // Use Debug.Log(...) to log to the Console view

9 Debug.Log("Hello, World!");

10 }

11 }

This should look fairly familiar to those who have experience with Java or C#. On line 1 we see the
using UnityEngine directive; this instructs C# to bring the UnityEngine classes in scope, so that we
can use them1. Our class, called StartTester, represents the component that we want to create. You
are required to name the class the same as the file. For example, because this component class is named
StartTester we have to save it in StartTester.cs. The class derives from the MonoBehaviour

base class2. MonoBehaviour is the base class for all components, and all components must derive from
MonoBehaviour in this way3.

We have only added one function to this class, void Start(). The name Start is special for
MonoBehaviours: Start() is called exactly once when this component has finished initialization. In-
side of Start(), we call Debug.Log(string), which is a Unity-provided equivalent of Console.Log
or printf.

1You can think of the using keyword as similar to import in Java or #include in C/C++
2The colon (:) operator works similarly to C++: it indicates in this case that StartTester is a MonoBehaviour. “:”

can be compared to extends in Java. More info on this can be found in the C# documentation.
3The name MonoBehaviour comes from Mono, a cross-platform community implementation of the C# standard library

and compiler (known together as Microsoft .NET). Unity uses a modified version of Mono for it’s compiler.

2

https://docs.microsoft.com/en-us/dotnet/csharp/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/polymorphism

Lecture 3 Wrangling Unity 98-127

Now let’s add our newly-created component to a GameObject. Create an empty GameObject (GameObject

Create Empty) and select it in the Hierarchy view. Click on the Add Component button in the inspector, and
search for “Start Tester.” Alternatively you can drag and drop the StartTester.cs file into the inspec-
tor. Notice how Unity picked up the CamelCasing in the class name StartTester and expanded it to the
more readable “Start Tester” name.

→

Hit the play button and you will see “Hello, World!” appear in the console previewer on the bottom left
of the window. You can click on that message or navigate to Window General Console to open the Unity
Console Window. The Console keeps track of all of the Debug.Log messages that you print in your scripts
as well as generally useful debugging messages from Unity components.

Our next example, the UpdateTester, replaces Startwith a new function, called Update(). Update
is called once per frame, unlike Start which is only called once. Most of your game logic goes inside of
Update, and it is the most straightforward way to interact with the scene over time.

3

Lecture 3 Wrangling Unity 98-127

BasicFunctions UpdateTester.cs

1 using UnityEngine;

2

3 public class UpdateTester : MonoBehaviour

4 {

5 // Update() is called once per frame

6 void Update()

7 {

8 Debug.Log("Hello, World! (a lot)");

9 }

10 }

Attach this script to the empty GameObject, and watch the console get spammed by “Hello, World!”s.
This occurs because Debug.Log is being called once per frame, and there are around 60 frames per second.
Therefore we get hundreds of messages in the Console window. You can click the Collapse button at the top
of the Console to coalesce debug messages that come from the same line of code. This is incredibly helpful
to parse the log when multiple Debug.Logs are being called per frame!

/

4 Adding Fields to Components

You may recall that Unity’s built-in components are all configurable via the inspector. For example, we can
modify a Box Collider’s extents or a Character Controller’s walk speed. You can make your own components
configurable as well. There are two ways to do this:

1. Add a public variable to your component class

2. Add a private variable to your component class with [SerializeField] before the declaration.
Special keywords in square brackets like SerializeField are called attributes in C#. Attributes allow
you to give hints about how your code should be treated by the C# compiler and Unity’s runtime; you
can read more on them here. Read more on [SerializeField] in the Unity Scripting Reference.

It is a matter of style whether or not you want to use public or [SerializedField] private variables;
in general you should use public only if you intend for other scripts to modify that value. Unity will

4

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/attributes/
https://docs.unity3d.com/ScriptReference/SerializeField.html

Lecture 3 Wrangling Unity 98-127

automatically detect the type of each field and add a corresponding editor in the Unity inspector. Below is a
simple modification on the StartTester that allows for a custom String to print:

BasicFunctions FieldTester.cs

1 using UnityEngine;

2

3 public class FieldTester : MonoBehaviour

4 {

5 // Mark fields with [SerializeField] to allow

6 // them to be edited in the inspector

7 [SerializeField]

8 private string StringToPrint;

9

10 private void Start()

11 {

12 Debug.Log(StringToPrint);

13 }

14 }

Here is what this script looks like in the Unity in-
spector: Notice how Unity once again picked up on the
camel casing of StringToPrint and also detected the
type of the variable (string). The input field that
Unity displays is specific to this type. In fact, many dif-
ferent types are supported by Unity to be displayed via
[SerializedField]. These types are known as Se-
rializable Types 4 Here’s a summary of which types are
supported (Source: Unity Scripting Reference):

1. All classes inheriting from UnityEngine.Object, for example GameObject, Component, MonoBehaviour,
Texture2D, and AnimationClip.

2. All basic data types like int, string, float, and bool.

3. Unity types: Vector2, Vector3, Vector4, Quaternion, Matrix4x4, Color, Rect, LayerMask. . .

4. Arrays of a serializable type (For example: int[], GameObject[])

5. Lists of a serializable type (For example: List<Vector3>)

6. enum types (more info here)

7. structs, as well as classes marked with the [System.Serializable] annotation.

The next example demonstrates different types of interesting Serializable types that are built in to Unity:
4The term Serializable is rooted in a C# concept known as Serialization. From the Microsoft C# documentation: “Serialization

is the process of converting an object into a stream of bytes to store the object or transmit it to memory, a database, or a file.”
(Source) Unity is internally Serializing your game data to an asset file.

5

https://docs.unity3d.com/ScriptReference/SerializeField.html
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/enum
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/serialization/index

Lecture 3 Wrangling Unity 98-127

BasicFunctions LotsOfFieldsTester.cs

1 using UnityEngine;

2 using UnityEngine.Events;

3

4 public class LotsOfFieldsTester : MonoBehaviour

5 {

6 [Header("Basic Fields")]

7 [SerializeField]

8 private int _IntField;

9 [SerializeField]

10 private float _FloatField = 5.0f;

11 [SerializeField]

12 private string _StringField = "Test Field";

13 [SerializeField]

14 private Vector3 _VectorField = new Vector3(42, 69, 1337);

15

16 [Header("Object Fields")]

17 [SerializeField]

18 private GameObject _GameObjectField;

19 [SerializeField]

20 private Rigidbody _ComponentField1;

21 [SerializeField]

22 private MeshRenderer _ComponentField2;

23 [SerializeField]

24 private Material _AssetField1;

25 [SerializeField]

26 private Mesh _AssetField2;

27

28 [Header("Basic Fields with Controls")]

29 [SerializeField]

30 [Range(-1.0f, 1.0f)]

31 private float _RangeFloatField;

32 [SerializeField]

33 [TextArea]

34 private string _LargeStringField;

35 [Header("Weird/Advanced Fields")]

36 [SerializeField]

37 private UnityEvent _EventField;

38 [SerializeField]

39 private LayerMask _LayerMaskField;

40 }

Importantly, we can create fields for the basic types (float, Vector3, etc) but also for complex Unity
types (components like MeshRenderer, GameObjects, Materials. . .). Also here I use the [Header(string)]
attribute to add a nice bold header before certain controls. This is for aesthetic purposes only and does not
affect gameplay, but can be nice to organize your fields for level designers. To set a default value, simply
set the variable in your script equal to something (see the _VectorField for example)

6

Lecture 3 Wrangling Unity 98-127

5 Procedural Animation

One of the most common tasks that you need to do when creating components is to move GameObjects. The
transform variable, available to all MonoBehaviours, allows you to change the position, rotation, scale,
and parent of any GameObject. For example, transform.position = Vector3.zero; translates the
current script’s GameObject to the origin (Vector3s are used to represent any kind of X/Y/Z position). The
globally-accessible constant Time.time gives you the current time, in seconds, since the game launched.
You can use this to build simple animations:

BasicFunctions ClosedFormAnimation.cs

1 using UnityEngine;

2

3 public class ClosedFormAnimation : MonoBehaviour

4 {

5 [SerializeField]

6 private float Radius = 1.0f;

7 [SerializeField]

8 // Vector3.zero == new Vector3(0,0,0)

9 private Vector3 Center = Vector3.zero;

10 [SerializeField]

11 private float Speed = 1.0f;

12

13 private void Update()

14 {

15 float s = Mathf.Sin(Time.time * Speed);

16 float c = Mathf.Cos(Time.time * Speed);

17

18 transform.position = Center + new Vector3(c * Radius, s * Radius, 0);

19 }

20 }

The above script moves the GameObject it is attached to in a circle. The radius and center of the circle
are given by variables in the inspector, as well as the speed of movement in radians per second. We use the
Unity-provided Mathf library to get Sin and Cos functions, which are used to calculate the final position
using basic trigonometry. Importantly, we use Time.time to find the position along the circle.

In real games, however, your components need to respond to “stimuli” that are outside of your control.
For example, you may need to respond to user input which is totally unpredictable. Because of this, using
Time.time to calculate an absolute position won’t cut it. Instead, we would like to control the velocity of
the parent GameObject over time. The below script is an example of this concept: instead of setting the
position explicitly, we are adding to the “current” position.

7

https://docs.unity3d.com/ScriptReference/Mathf.html

Lecture 3 Wrangling Unity 98-127

BasicFunctions DeltaTimeAnimation.cs

1 using UnityEngine;

2

3 public class DeltaTimeAnimation : MonoBehaviour

4 {

5 public float Speed = 1.0f; // speed in m/s

6 public Vector3 Direction = new Vector3(1,0,0);

7 public bool localPosition = false;

8

9 // Update is called once per frame

10 private void Update()

11 {

12 Vector3 delta = Speed * Direction.normalized * Time.deltaTime;

13

14 if (localPosition)

15 transform.localPosition += delta;

16 else

17 transform.position += delta;

18 }

19 }

Time.deltaTime gives the time in seconds since the last call to Update(). It is used here on line
12 to ensure that the movement speed is independent of framerate. Let’s say, for example, that you set the
speed variable to 1 m/s. If you didn’t multiply by Time.deltaTime, then assuming 60fps you would be
moving at around 60 m/s! Even more worryingly, the GameObject would move faster on faster machines.
Another way of thinking of this is via dimensional analysis; Speed is in m

s and we want to know how many
meters to move. By multiplying by Time.deltaTime, which is measured in seconds, we have m

s × s =

m, which is what we want. Also highlighted here is the difference between transform.position and
transform.localPosition. transform.position changes the absolute position of the GameObject,
ignoring any parenting. transform.localPosition represents the position of the GameObject relative
to the parent GameObject (if the transform has no parent, the two values are the same).

5.1 Responding to User Input

One common task when building a game is to respond to some
input by the player. This could be the Mouse, Keyboard, or a
Gamepad. Unity requires that all possible inputs are first out-
lined in the Input Manager. Open the input manager via Edit

Project Settings. . . and select the Input submenu. The input
manager consists of a set of named Input Axes that list out all
of the possible inputs to your game. The default set of inputs,
shown to the right, cover most common inputs that you would
need in a simple game. For example, the “Horizontal” axis sets
the so-called positive button to / D and the negative but-

8

Lecture 3 Wrangling Unity 98-127

ton to / A . If you scroll down the input manager, you will find a second entry for “Horizontal” that is
configured to respond to the X axis of a joystick. What this means is that the “Horizontal” axis will have a
value of −1 if you press / A or if you hold the left stick on a gamepad to the left, and it will have a
value of +1 if you press / D or hold the left stick on a gamepad to the right. You can read more about
each option in the Input Manager in the Unity Manual here.

The next script shows how to access these input axis values from within Update(). The operative
command is Input.GetAxis(string), which returns a float – usually ranging from −1 to +1 – of the
value at that axis. The parameter matches the name of each axis that we configured in the Input Manager:
in this case “Horizontal” and “Vertical.” I like to allow the axis names to be configurable in Unity, so that if
we need to change the Input Manager then we don’t need to dive in to each script to fix the axis names.

BasicFunctions SimpleMovement.cs

1 using UnityEngine;

2

3 public class SimpleMovement : MonoBehaviour

4 {

5 [SerializeField]

6 private string _HorizontalMovementAxis = "Horizontal";

7 [SerializeField]

8 private string _VerticalMovementAxis = "Vertical";

9 [SerializeField]

10 private float _MovementSpeed = 1.0f;

11

12 private void Update()

13 {

14 float hoz = Input.GetAxis(_HorizontalMovementAxis);

15 float vrt = Input.GetAxis(_VerticalMovementAxis);

16

17 Vector3 mov = new Vector3(hoz, vrt, 0);

18

19 if (mov.sqrMagnitude > 1.0f)

20 mov.Normalize(); // make vector have length 1

21

22 transform.position += mov * _MovementSpeed * Time.deltaTime;

23 }

24 }

Once we have the input values (stored, again, in the range −1↔ +1 in the hoz / vrt variables) we convert
them into a Vector3 on line 17. On line 19, we protect against the case where the player holds both
+ for example. In this case, hoz = vrt = 1, so the length of mov is (by pythagorean theorem)√
12 + 12 =

√
2, which is greater than 1. This would mean that the player can move faster by moving

diagonally! This bug is actually pretty common in games with 2D movement (especially bad console ports).
The solution is to call mov.Normalize(), which replaces mov with a vector in the same direction, but with
length 1. If you attach SimpleMovement.cs to a GameObject, you can now control it with the arrow keys
(or any other of the keys mentioned above.)

9

https://docs.unity3d.com/Manual/class-InputManager.html

Lecture 3 Wrangling Unity 98-127

5.2 Accessing Other Components

What do you do if you want to access another component of the current GameObject? For example, our
script might want to change the movement speed of a player character, the color of an object, etc. You can
use the GetComponent<Type>() function (available to all MonoBehaviours) to access the component
attached to the same GameObject as the caller with type Type. The following example illustrates how to
use GetComponent to change the color of a GameObject. To do this we need to modify the GameObject’s
Material, which is stored in the Mesh Renderer component (as seen in lecture 2). Unity’s components are
named after the class names in C# scripts, just like your own components. Therefore we can deduce that
the C# type of the “Mesh Renderer” component is MeshRenderer. Similarly “Box Collider” has the type
BoxCollider, “Rigidbody 2D” has type Rigidbody2D, etc.

BasicFunctions ChangeMaterialTester.cs

1 using UnityEngine;

2

3 [RequireComponent(typeof(MeshRenderer))]

4 public class ChangeMaterialTester : MonoBehaviour

5 {

6 [SerializeField]

7 private Gradient _Gradient;

8 [SerializeField]

9 [Tooltip("Length in seconds to cycle through the gradient")]

10 private float _CycleLength;

11

12 // Note: This field isn’t serialized, so we can’t edit it in the inspector!

13 private MeshRenderer _Renderer;

14

15 private void Start()

16 {

17 // GetComponent<T> gets the component

18 // with type T attached to the current GameObject.

19 // If none exist, returns null

20 _Renderer = GetComponent<MeshRenderer>();

21 }

22

23 private void Update()

24 {

25 float a = (Mathf.Cos(Time.time / _CycleLength * (2.0f * Mathf.PI)) +

1.0f) / 2.0f;

26 Color c = _Gradient.Evaluate(a);

27

28 // _Renderer.material has type ‘Material‘

29 // Material.color has type ‘Color‘

30 _Renderer.material.color = c;

31 }

32 }

10

Lecture 3 Wrangling Unity 98-127

This example also makes use of the built-in Gradient type to cycle between many colors over time.
The value float a in Update cycles from 0 to 1 as time moves forward, and the gradient is evaluated
at that value. The Color type is used to represent RGBA color values; we get at our MeshRenderer’s
material via MeshRenderer.material and further are able to change the color via Material.color.
How do I know all of this? Am I a god, and have just memorized all of the keywords? Of course not: I
simply went to Unity’s Scripting Reference, which can be accessed at

https://docs.unity3d.com/ScriptReference

For example, you can find a reference for the MeshRenderer here and a reference for Gradient here.
The Scripting API reference pages are an absolutely essential reference for Unity programmers–if you want
to learn all of Unity’s ins and outs, expect to look at this often! Anyway, here’s what this script looks like in
the inspector. The Gradient type happens to have a really awesome interactive editor:

Top: The gradient popup menu featured in ChangeMaterialTester.
Bottom: Result when attached to a sphere.

6 Talking to the Physics Engine

At one point when making almost any game, you’ll have to deal with collisions. You need to think about
collisions when a projectile leaves a cannon, a pong ball bounces off the paddle, Mario hits the bottom of an
item box, Sonic collects a ring, etc. In many cases, you want to react to collisions (for example: when the
player collides with a coin GameObject you might want to destroy the coin, spawn a shiny particle effect, and
increment a coin counter). In the last lecture, we talked about Colliders. Colliders are special components
that talk with Unity’s physics engine and mark a GameObject as “collidable.” You also use Colliders to
define the shape of the collidable object (which can be different than what is rendered on screen). There are
a few different types of colliders: the Box Collider and Sphere Collider are shaped like a Box and Sphere,
and the Mesh Collider allows you to specify a mesh to collide with. As we discussed in the last lecture, you

11

https://docs.unity3d.com/ScriptReference
https://docs.unity3d.com/ScriptReference/MeshRenderer.html
https://docs.unity3d.com/ScriptReference/Gradient.html

Lecture 3 Wrangling Unity 98-127

can additionally add a Rigidbody component to have Unity simulate the GameObject, applying forces such
as Gravity and reacting to collisions realistically.

If you want to respond to collisions with your own logic, create a C# script as normal. Instead of using
Start or Update to check for collisions, we can use the built-in OnCollisionEnter / OnCollisionExit
/ OnTriggerEnter / OnTriggerExit functions. Recall from the last lecture that triggers are colliders
with the “Is Trigger” option enabled in the inspector. Triggers do not affect GameObjects physically (for
example they don’t block rigidbodies from overlapping with them). Instead, triggers are meant to be used
by your scripts for logic. For example, in a Mario game you would want to set the coins as triggers so that
they do not affect Mario’s velocity when you collect them. However you would want to set the item boxes
as Colliders because Mario should be able to bump his head against them.

PhysicsExamples CollisionDetectionTester.cs

1 using UnityEngine;

2

3 public class CollisionDetectionTester : MonoBehaviour

4 {

5 private void OnTriggerEnter(Collider other)

6 {

7 Debug.Log(gameObject.name + " just got triggered by " +

other.gameObject.name);

8 }

9

10 private void OnTriggerExit(Collider other)

11 {

12 Debug.Log(gameObject.name + " just ended trigger by " +

other.gameObject.name);

13 }

14

15 private void OnCollisionEnter(Collision collision)

16 {

17 Debug.Log(gameObject.name + " just collided with " +

collision.gameObject.name);

18 }

19

20 private void OnCollisionExit(Collision collision)

21 {

22 Debug.Log(gameObject.name + " just ended collision with " +

collision.gameObject.name);

23 }

24 }

To demonstrate this script, below is a scene with three cubes. The bottom cube, called “Ground,” has
a Box Collider with Is Trigger disabled. The middle (transparent green) cube, named “Trigger,” has a Box
Collider with Is Trigger enabled. The top cube, named “Falling Cube,” has a Box Collider and a Rigidbody
attached. The ground and trigger cubes both have the above CollisionDetectionTester component.
When we run the script, OnTriger{Enter,Exit} is called on the trigger when the falling cube enters and

12

Lecture 3 Wrangling Unity 98-127

exits it, and OnCollisisonEnter is called on the ground when the falling cube collides with it. Because
the falling cube never stops colliding with the ground, OnCollisionExit is not called.

→ →

→ →

This is also the first time that I’ve used the gameObject variable. gameObject is available to all
MonoBehaviours and provides a pointer to the “owner” of this instance of the MonoBehaviour. The type
of gameObject is UnityEngine.GameObject.

If you are making a 2D game, there is a completely different set of components that you need to use
for Physics. For example, in a 2D game, instead of using a Box Collider component you should use a
Box Collider 2D. There is a 2D version of every physics component: Rigidbody and Rigidbody 2D, Sphere
Collider and Circle Collider 2D, etc. Similarly, when responding to 2D collision we need to use 2D variants
of the collision response functions: OnTriggerEnter2D, OnTriggerExit2D, OnCollisionEnter2D,
OnCollisionExit2D. Unity is built this way because under the hood, the 3D physics system uses NVIDIA
PhysX, which is optimized for 3D games. The 2D physics system uses the Box2D Physics Engine, which
is purpose-built for 2D games. On the next page is a 2D variant of the collision detection tester that will
respond to 2D physics components. Do not use the 3D versions of OnCollision/OnTrigger functions
with 2D colliders!

13

https://docs.unity3d.com/ScriptReference/GameObject.html
https://www.geforce.com/hardware/technology/physx
https://www.geforce.com/hardware/technology/physx
https://github.com/erincatto/box2d

Lecture 3 Wrangling Unity 98-127

PhysicsExamples CollisionDetectionTester2D.cs

1 using UnityEngine;

2

3 public class CollisionDetectionTester2D : MonoBehaviour

4 {

5 private void OnTriggerEnter2D(Collider2D other)

6 {

7 Debug.Log("Just got triggered by GameObject called " +

other.gameObject.name);

8 }

9

10 private void OnTriggerExit2D(Collider2D other)

11 {

12 Debug.Log("Just ended trigger by GameObject called " +

other.gameObject.name);

13 }

14

15 private void OnCollisionEnter2D(Collision2D collision)

16 {

17 Debug.Log("Just collided with GameObject called " +

collision.gameObject.name);

18 }

19

20 private void OnCollisionExit2D(Collision2D collision)

21 {

22 Debug.Log("Just ended collision with GameObject called " +

collision.gameObject.name);

23 }

24 }

7 Using UnityEvents

Triggers are a great opportunity to talk about a very useful feature of Unity’s scripting called UnityEvents.
UnityEvents are similar to events in C# and function pointers in C/C++. They are an implementation of
the Command Design Pattern, which is sort of like a callback. UnityEvents allow you to store an action into
a variable, such that you can execute that action at any time. Even better, these actions are editable in the
inspector, just like any other field!

The next script is an example of how to use UnityEvents to build Game Logic directly in the inspec-
tor. We have two editable UnityEvents that are meant to respond to trigger enter and exit events. In the
OnTrigger events, we then call UnityEvent.Invoke(), which actually executes the event. Note that if
no actions are assigned to either UnityEvent, they are set to null. So we need to check for null before
calling Invoke().

14

http://gameprogrammingpatterns.com/command.html

Lecture 3 Wrangling Unity 98-127

PhysicsExamples EventOnTrigger.cs

1 using UnityEngine;

2 using UnityEngine.Events; // Required for UnityEvent type

3

4 public class EventOnTrigger : MonoBehaviour

5 {

6 [SerializeField]

7 private UnityEvent _OnEnter;

8 [SerializeField]

9 private UnityEvent _OnExit;

10

11 private void OnTriggerEnter(Collider other)

12 {

13 if(_OnEnter != null)

14 _OnEnter.Invoke();

15 }

16

17 private void OnTriggerExit(Collider other)

18 {

19 if(_OnExit != null)

20 _OnExit.Invoke();

21 }

22 }

To demonstrate this I’ve set up two lights, a red and blue light. I’d like to enable the red light when
a trigger is being triggered, and blue when it is not. I can use the EventOnTrigger script to do this.
UnityEvents have an interactive editor in the inspector that allows you to select which function you want to
call on which GameObject. Here I call the function GameObject.SetActive() to enable and disable the
red and blue lights in response to each event. Normally this would have required me to write a new script,
but UnityEvents let me do this right in the inspector! UnityEvents are a powerful tool, and allow you to
build simple behaviors without touching a line of code.

Click on the + button to add a new action to the UnityEvent. All actions are executed simultaneously upon
calling UnityEvent.Invoke() in your script.

15

https://docs.unity3d.com/ScriptReference/GameObject.SetActive.html

Lecture 3 Wrangling Unity 98-127

Here we configure the event to enable and disable the lights. You need to specify a target GameObject to
call something on. Here we are calling GameObject.SetActive, but we can call functions in the target’s

GameObject, Transform, or any component.

→ →

When a cube activates the trigger (the green cube), the lights are enabled and disabled as expected.

8 Prefabs

Game worlds tend to have many objects that are repeated very often. For example, you might need to
spawn in dozens of the exact same enemy in a level. Obviously you wouldn’t want to rebuild the enemy
GameObject every time you wanted to spawn it in. One way to solve this issue is to build the enemy once
and duplicate it (or Ctrl + D). This works at first, but what if you want to change a detail of your enemy
after duplicating them? You would have to re-do your change for each instance.

Unity addresses this common problem via Prefabs. Prefabs are GameObjects that are saved to a file.
You can create a prefab by dragging a GameObject from the hierarchy view onto the project view. To see
prefabs in action, open the scene located in the base code at ScriptingIntro PrefabExamples

PrefabTestScene.unity. Here I’ve created a small environment with a First Person Controller that
you can walk around in (if you want to review how to configure the First Person Controller, see lecture 2).
The environment is surrounded by a fence. However, instead of making the fence out of one mesh, I’ve
made it out of many copies of a GameObject for each individual link in the fence.

16

Lecture 3 Wrangling Unity 98-127

In the above picture we’ve selected one individual fence link. Notice how, in the hierarchy view, the
fence GameObjects have a blue box next to them. This is because each of the fence GameObjects is linked
to a prefab. The prefab itself is located at ScriptingIntro PrefabExamples Fence.asset. We
can modify the prefab by double clicking on the prefab file OR clicking on the small arrow next to a fence
GameObject at the right side of the hierarchy view (circled above). Unity will then “jump into” the prefab
so that you can edit it directly:

Let’s pretend that while working on this game, your team lead complained that the fences look too
boring. They suggested adding more details to the fences. If we edit the prefab by adding a crossbar, then
the changes will apply to each instance throughout the scene:

→

17

Lecture 3 Wrangling Unity 98-127

Keep in mind that if we change any of the instances of the fence link in our scene, those changes will
override the prefab version. For example, if we change the Z-scale of one of our fence link instances, then
change the Z-scale in the prefab to something else, the instance will retain the changes you made to it:

+ =

Notice how in the above images, the scale field of the instance (see the left and right picture above)
has a small blue mark to the left of it. This means that the scale of this object overrides the prefab. You can
also see which fields are overridden because they are displayed in bold. You can reset the Z-scale to what is
stored in the prefab by right clicking on the field and selecting “Revert.” Alternatively you can apply your
change to the main prefab by selecting “Apply to Prefab . . . ”

→

8.1 Instantiating Prefabs at Runtime

You can also use prefabs to spawn GameObjects into your scene. You could use this to spawn waves
of enemies into your levels over time, for example. There is a command called Instantiate<Type>,
available to all MonoBehaviours, that creates a copy of whichever object you pass into it. The below script
spawns a prefab (specified via the field _PrefabToSpawn, which is of type GameObject) into the scene
whenever the player presses a button. In this case the default is to use Fire1 as the axis, which is the left
mouse button in the default Input Manager configuration (see “Responding to User Input” above). In the
following example we use Input.GetButtonDown(string), which is true only on the first frame that
the user presses that button.

18

Lecture 3 Wrangling Unity 98-127

PrefabExamples SpawnPrefabOnButton.cs

1 using UnityEngine;

2

3 public class SpawnPrefabOnButton : MonoBehaviour

4 {

5 [SerializeField]

6 private string _ButtonToPress = "Fire1";

7 [SerializeField]

8 private GameObject _PrefabToSpawn;

9 [SerializeField]

10 private Transform _TransformToSpawnAt;

11

12 private void Update()

13 {

14 if(Input.GetButtonDown(_ButtonToPress))

15 {

16 var go = Instantiate<GameObject>(_PrefabToSpawn);

17 go.transform.position = _TransformToSpawnAt == null ?

transform.position : _TransformToSpawnAt.position;

18 go.transform.rotation = _TransformToSpawnAt == null ?

transform.rotation : _TransformToSpawnAt.rotation;

19 }

20 }

21 }

You might also want to spawn a prefab every N seconds. A great way to do this is by using Coroutines.
Coroutines make clever use of C#’s asynchronous programming features to defer execution of a function to
a later frame. See this Unity manual page for more information on coroutines:

https://docs.unity3d.com/Manual/Coroutines.html

The next example uses Coroutines to automatically instantiate a prefab every _SpawnIntervalSeconds
seconds. This works because on line 26 we defer execution of SpawnPrefabCoroutine() to a later frame.

PrefabExamples SpawnPrefabInterval.cs

1 using System.Collections;

2 using UnityEngine;

3

4 public class SpawnPrefabInterval : MonoBehaviour

5 {

6 [SerializeField]

7 private float _SpawnIntervalSeconds = 1.0f;

8 [SerializeField]

9 private GameObject _PrefabToSpawn;

10 [SerializeField]

11 private Transform _TransformToSpawnAt;

19

https://docs.unity3d.com/Manual/Coroutines.html

Lecture 3 Wrangling Unity 98-127

12

13 private void Start()

14 {

15 StartCoroutine(SpawnPrefabCoroutine());

16 }

17

18 private IEnumerator SpawnPrefabCoroutine()

19 {

20 while(true)

21 {

22 var go = Instantiate<GameObject>(_PrefabToSpawn);

23 go.transform.position = _TransformToSpawnAt == null ?

transform.position : _TransformToSpawnAt.position;

24 go.transform.rotation = _TransformToSpawnAt == null ?

transform.rotation : _TransformToSpawnAt.rotation;

25

26 yield return new WaitForSeconds(_SpawnIntervalSeconds);

27 }

28 }

29 }

20

Lecture 3 Wrangling Unity 98-127

9 Exercise: The Bomb Lab

You have been hired by Obedient Cat, a major AAA studio to help out with their next hit game, “Previously
Mapped 4!” You sit down to work on your first day when your manager reveals terrible news: unfortunately
the notorious Dr. Evil has a vendetta against the company and has engaged in cyber terrorism. Your task
today is to defuse a bomb that Dr. Evil has planted in your game!

Open the scene located in the base code at BombLab BombLab.unity. You need to figure out how
to defuse the bomb. you’ll know the bomb is defused because a message saying “DEFUSED!! NICE JOB”
will appear. As a starting point, I’d recommend taking a look at BombLab Bomb.cs. This file contains
the code that makes the bomb work.

• You may look at the code in Bomb.cs, but you may not edit it.

• You may move, rotate, or scale any object in the scene. You may also use ProBuilder to modify the
scene.

• You must edit the “Andrew ID” field of the “Bomb” component, which is attached to the “Bomb”
GameObject:

• You may not edit any other fields of the “Bomb” GameObject (besides the position / rotation / scale)

• You will probably need to use the UnityEvent exposed by the Event On Look And Press script, on
the “Button 1” GameObject. This script works similarly to the “Event On Trigger” script discussed
above: it triggers the given UnityEvent when the player looks at the button and clicks. Right now, it
apparently calls a function called Bomb.Defuse(). Maybe this will defuse the bomb...? Perhaps, but
Dr. Evil is pretty crafty. . .

21

Lecture 3 Wrangling Unity 98-127

22

	Objectives
	Downloading the Base Code
	Cooking Components
	Adding Fields to Components
	Procedural Animation
	Responding to User Input
	Accessing Other Components

	Talking to the Physics Engine
	Using UnityEvents
	Prefabs
	Instantiating Prefabs at Runtime

	Exercise: The Bomb Lab

